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Abstract

Developing e�cient programs for distributed systems is di�cult because computations must

be e�ciently distributed and managed on multiple processors. In particular, the program-

mer must partition functions and data in an attempt to �nd a reasonable balance between

parallelism and overhead. Furthermore, it is very expensive to code an algorithm only to �nd

out that the implementation is not e�cient. As a result, it is often necessary to determine

and examine those characteristics of an algorithm that can be used to predict its suitability

for a distributed computing system.

In earlier work [7, 8], we presented a framework for the study of synchronization and

communication e�ects on the theoretical performance of common homogeneous algorithmic

structures. In particular, we examined the synchronous, asynchronous, nearest-neighbor,

and asynchronous master-slave structures in terms of expected execution times. In this pa-

per, we examine the e�ects of synchronization and communication on the expected execution

times of heterogeneous algorithmic structures. Speci�cally, we consider structures containing

two di�erent types of tasks, where the execution times of the tasks follow one of two di�erent

uniform distributions or one of two di�erent normal distributions. Furthermore, we compare

the expected execution times of the heterogeneous algorithmic structures with times for cor-

responding homogeneous structures. Finally, we develop bounds for the expected execution

times of the heterogeneous structures and compare those bounds to simulated execution

times.

�This work was supported by the National Aeronautics and Space Administration under NASA Contract

NAS1{19480 while the author was in residence at the Institute for Computer Applications in Science and

Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.
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1 Introduction

It is well known that interprocessor communication can be costly, particularly in distributed

systems where the distance between nodes is large. High interprocessor communication is

the cause of the \saturation e�ect", which occurs when allocating additional processors to a

problem causes a decrease in performance [6].

Communication overhead is often due to task synchronization, which is required to ensure

that task precedence constraints are ful�lled. Synchronization is a property of an algorithm

or problem. If one process �nishes earlier than its synchronization partners, it must sit idle

until the others �nish, which is why synchronization has been called \a major cause of wasted

computing cycles and of diminished performance in parallel computing" [3].

Many problems for parallel and distributed systems have two or more potential imple-

mentations, so it is particularly important to consider synchronization and communication

when evaluating which implementation will give the best performance. This research ex-

amines the e�ects of synchronization and communication on execution time for common

algorithmic structures. In particular, we will consider heterogeneous structures in which the

execution times of the tasks follow known probability distributions and communication times

are zero or constant.

2 Background

2.1 Algorithmic Structures

It is known that many algorithms possess an identi�able structure and that many algorithms

share communication patterns [1]. Figure 1 gives sample precedence graphs for four parallel

structures commonly found in algorithms: asynchronous, nearest-neighbor, synchronous,

and asynchronous master-slave. In each of these structures, arcs from one node to another

indicate that the �rst node (task) must complete execution before the second node (task)

can begin execution. Notice that tasks in a row can execute concurrently if there are enough

processors. Furthermore, notice that the asynchronous master-slave structure is related to

the asynchronous structure in that there is no explicit synchronization between the slave

processes. These and other algorithmic structures are discussed in more detail in [2, 5, 7].

2.2 Analysis of Algorithmic Structures with Homogeneous Tasks

In [7, 8], we examined the e�ects of synchronization and communication on execution times

for di�erent categories of homogeneous algorithmic structures. In particular, we analyzed

the synchronous, asynchronous, nearest-neighbor, and asynchronous master-slave structures

under the assumption that all of the tasks had execution times that were independent and

identically distributed (i.i.d.) according to the uniform u(0; 1) distribution or the normal

n(1
2
; 1

12
) distribution.

At �rst, we considered the e�ect of synchronization alone by assuming that communica-

tion times were zero. For very small problems, the results presented in [7, 8] demonstrated

that the algorithmic structure used makes little di�erence in the expected execution time.
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b)  Nearest−Neighbora)  Asynchronous

c)  Synchronous d)  Asynchronous Master−Slave

=  Task =  Synch point

Figure 1: Examples of Algorithmic Structures

However, the results demonstrated that for large problems the cost of synchronization can

be quite signi�cant. In particular, the synchronous structure required the longest execution

times while the nearest-neighbor structure had execution times that were only slightly better.

As expected, the asynchronous structure gave the best execution times.1

Next, we analyzed the structures in Figure 1 under the assumption that communication

times were constant and non-zero. By considering the possible combinations for commu-

nication and computation, we developed bounds for the expected execution time for each

of these structures and compared the bounds with simulated executions. The simulation

results showed that the nearest-neighbor structure su�ered little performance degradation

as the amount of work and number of processors were increased. The synchronous and

asynchronous master-slave structures both showed performance degradation as the amount

of work and number of processors were increased. The asynchronous master-slave structure

1When communication times are zero and the master's work is negligible, the asynchronous master-slave

structure is the same as the asynchronous structure. Thus, the discussion of the cost of synchronization

alone does not mention the asynchronous master-slave structure.
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showed better performance with small numbers of processors and smaller communication

times, while the synchronous structure showed better performance with large numbers of

processors and larger communication times. However, the nearest-neighbor structure was

better than all but the asynchronous structure.

3 Algorithmic Structures with Heterogeneous Tasks

Our earlier analysis assumed that all of the tasks in the structure were identically distributed

and that the tasks were executed on n identical processors, where n was the maximum

width of the structure. This work examines the e�ect on performance when either one of

these assumptions is relaxed. Notice that we still require that the task execution times be

independent.

Suppose we have a program composed of i.i.d. tasks that currently runs on n identical

workstations. Next, suppose that m of these workstations (m < n) are replaced with work-

stations that are identical in all respects except for clock speed. In particular, suppose that

the new workstations have a faster clock speed. What is the expected execution time now

that the system has changed? In this case, the capability of each machine is the same, but

some machines will complete the tasks earlier than the others due to the di�erence in clock

speed. The e�ect of this change is that the tasks on the faster machines now have task

times that follow a di�erent distribution than the tasks on the slower machines. Thus, we

can model this new system as a system of n identical processors with task times that follow

two di�erent distributions.2 The result is an algorithmic structure with heterogeneous task

times.

Similarly, consider a program in which two di�erent types of tasks need to be executed

concurrently on n workstations. It is possible that we have two di�erent types of workstations

such that the execution times are identically distributed when the tasks are appropriately

matched to the capabilities of the workstations. If so, the system can be modeled using

an algorithmic structure with homogeneous task times. However, it is more likely that the

resulting task times will not be identically distributed, so the system should be modeled

using an algorithmic structure with heterogeneous task times.3 Notice that the number of

task distributions for the structure will depend on the homogeneity or heterogeneity of the

n workstations. If the n workstations are identical, the heterogeneous structure will have

tasks from two di�erent distributions. If not, the algorithmic structure will have tasks from

two or more distributions.

4 Analysis of Synchronization

In this section, we will consider the e�ects of synchronization on execution time for algorith-

mic structures with heterogeneous tasks. Our results are based on the following assumptions:

2In this example, the distributions will be of the same type (uniform, normal, etc.) but will have di�erent

means and variances.
3In this example, the distributions could be of di�erent types and have di�erent means and variances.

3



� Each task in the structure has an execution time that is independent and distributed

according to one of two known distributions, where the two distributions are of the

same type (e.g. both uniform or both normal) but have di�erent means and variances.

� Communication between tasks requires zero units of time.4

� For a precedence graph of width n (i.e. the graph contains up to n tasks that may be

executed concurrently), there are n identical processors which may be used to execute

the algorithmic structure.

Following our work in [7, 8], we are using the uniform and normal distributions for task

execution times because they are \appropriate for many applications" [4].

4.1 Uniform Distribution

Consider a random variable X from the uniform distribution (0; a) (i.e. uniform on the

interval (0; a))5. The probability density function (pdf) f(x) and cumulative distribution

function (cdf) F (x) are given by:

f(x) =

8><
>:

1

a
; 0 < x < a

0; otherwise

and F (x) =
Z

x

�1

f(z) dz =

8>>>>><
>>>>>:

0; x � 0

x

a
; 0 < x < a

1; x � a:

The expected value E(X) of X is computed as

E(X) =
Z
1

�1

x � f(x) dx =
Z

a

0

1

a
x dx =

a

2
:

Synchronous Structure

Consider the synchronous structure in Figure 1c. Notice that tasks in one level must synchro-

nize before any task proceeds to the next level. As discussed in [7, 8], the overall execution

time for this structure is given by a sum of max terms, where each term is the maximum of

the execution times for a particular iteration.

Suppose we have n random variables, where m of the variables (Xi, 1 � i � m) are

distributed uniformly on (0; a) and n�m of the variables (Yj, 1 � j � n�m) are distributed

uniformly on (0; 1).6 Assuming that the variables are all independent, what is the expected

value of Z = max(X1; X2; : : : ; Xm; Y1; Y2; : : : ; Yn�m)? Notice that Z is the execution time

for an iteration of the synchronous structure in which the Xi and Yj are execution times of

the concurrent tasks. Furthermore, a can be considered to be a scaling factor to account for

the increased \speed" of the processors corresponding to the Xi tasks.

4This assumption will be removed in the analysis in Section 5.
5We could have easily picked a distribution uniform on the interval (c; d), but the equations are simpler

if we normalize to the interval (0; a).
6It is straightforward to generalize this to any m variables from u(0; a) and n�m variables from u(0; b),

where 0 < a < b. For simplicity, we chose u(0; a) and u(0; 1), where 0 < a < 1.
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We can determine the expected value E(Z) by �nding the distribution function G(z) and

taking the derivative to obtain the density function g(z). It can be shown that

G(z) = Pr (Z < z) =

8>><
>>:

�
1

a

�m

zn 0 < z < a < 1

zn�m 0 < a � z < 1;

(1)

which leads to

g(z) =

8>><
>>:

n

�
1

a

�m

z (n�1) 0 < z < a < 1

(n�m) z (n�m�1) 0 < a � z < 1:

(2)

The expected value E(Z) is computed as follows:

E(Z) =
Z

a

0
n

�
1

a

�m

zn dz +
Z 1

a

(n�m) z(n�m) dz

=

�
1

a

�m �
n

n + 1

�
a (n+1) +

�
n�m

n�m + 1

� h
1� a (n�m+1)

i

=

�
n

n+ 1

�
a (n�m+1) +

�
n�m

n�m + 1

�
�
�

n�m

n�m + 1

�
a (n�m+1)

=

�
n�m

n�m+ 1

�
+ a (n�m+1)

�
n

n + 1
� n�m

n�m + 1

�

=

�
n�m

n�m+ 1

� "
1 + a (n�m+1)

"
(n�m + 1)(n)

(n�m)(n + 1)
� 1

##
: (3)

Notice that when n is large or a is very small,

E(Z) � n�m

n�m+ 1
: (4)

In [7,8], we showed that the expected value for the maximum of n i.i.d. u(0; 1) variables

is

E(Yn) =
n

n + 1
: (5)

Comparing Equations 4 and 5, we see that Equation 4 is signi�cant because it tells us that

the expected execution time for n heterogeneous tasks (where n�m tasks are u(0; 1) and m

are u(0; a), where 0 < a < 1) is approximately the same as the expected execution time for

n�m homogeneous tasks (where all are u(0; 1)). Intuitively, this result is understandable

since the m tasks from (0; a) will generally be shorter that the n�m tasks from (0; 1) and

hence will have minimal e�ect on the maximum value.

For a synchronous structure with p identical levels, the expected execution timeE(synch
n;m

)

is given by

E(synch
n;m

) = p � E(Z) = p

�
n�m

n�m + 1

�"
1 + a (n�m+1)

"
(n�m+ 1)(n)

(n�m)(n + 1)
� 1

##
: (6)
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When n is large or a is very small, we can use a simpler approximation for E(synch
n;m

).

E(synch
n;m

) � p

�
n�m

n�m+ 1

�
(7)

Asynchronous Structure

Analysis of the synchronous structure was fairly straightforward because tasks in one level

must synchronize before any task proceeds to the next level. For the asynchronous structure

in Figure 1a, the analysis is more di�cult because of the lack of synchronization.

Figure 1a shows an asynchronous structure that has four streams of execution, each of

which contains three tasks in series. The execution time of a single stream depends on

the sum of three tasks, while the execution time of the entire structure depends on the

maximum of four sums. In [7,8], we discussed how the calculation of the expected value of a

maximum of n i.i.d. variables requires knowledge of the pdf for the variables. The problem

with analyzing the asynchronous structure is that it is di�cult to determine the pdf for a

sum of random variables. For example, the pdf for the sum of just three u(0; 1) variables is

given by:

g(x) =

8>>>>>><
>>>>>>:

4
�
1

6
x3
�3 �

1

2
x2
�
= 1

108
x11; 0 < x < 1

4
�
�x

3

3
+ 3x2

2
� 3x

2
+ 1

2

�3 �
�x2 + 3x� 3

2

�
; 1 < x < 2

4
�
x
3

6
� 3x2

2
+ 9x

2
� 7

2

�3 �
x
2

2
� 3x+ 9

2

�
; 2 < x < 3:

(8)

Notice that Equation 8 is not a simple function of the underlying u(0; 1) distribution. In

practice, algorithms consist of many levels of tasks, and the exact computation of the un-

derlying distribution of the sum can be tedious.

In [7], we mentioned that the normal distribution can be used to approximate the sum of k

tasks, where k is large. We also demonstrated that standard tables can be used to determine

the expected value for the maximum of n i.i.d. variables that are normally distributed.

Thus, we were able to obtain close approximations for the expected execution time of the

asynchronous structure. For the current work, we are not aware of any standard tables

that can be used to determine the expected value of the maximum of variables from two or

more normal distributions. Thus, we will use simulation to determine the behavior of the

asynchronous structure with heterogeneous tasks.

Before performing the simulation, it is useful to anticipate what the results will be. In the

analysis of the synchronous structure, we observed that the expected value for a combination

of variables from two di�erent uniform distributions with the same lower bound depends

primarily on the variables from the distribution with the larger mean. This behavior was

due to the fact that the variables from the \smaller" distribution will have little e�ect on

the maximum value. With the asynchronous structure, we would expect the same behavior,

particularly since the \faster" processors will likely race ahead of the \slower" ones.
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Nearest-Neighbor Structure

Figure 1b shows a nearest-neighbor structure in which each task must synchronize with one

or two neighbor tasks. In [7, 8], we discussed how analytical methods cannot be used to

determine the expected value of the nearest-neighbor structure because tasks in each level of

the nearest-neighbor structure cannot be isolated such that the �nal result is a sum of max

terms or themax of identical and independent random variables. Thus, simulation was used

to determine the behavior of the homogeneous nearest-neighbor structure. In Section 4.3,

we will present simulation results that demonstrate how the expected execution time of the

nearest-neighbor structure is a�ected by the presence of heterogeneous tasks.

4.2 Normal Distribution

As noted in [4], it is often reasonable to assume that tasks in a program have execution times

that follow a normal distribution n(�; �2), where � is the mean and �2 is the variance. The

normal distribution n(�; �2) has a pdf given by:

f(x) =
1

�
p
2�

exp

"
�(x� �)2

2�2

#
; �1 < x <1: (9)

In Section 4.1, we used the simple pdf of the uniform distribution to derive an equation for

the expected execution time of the heterogeneous synchronous structure. With the normal

distribution, a similar approach will not work because the pdf does not have an antiderivative.

Thus, simulation must be used to examine all of the heterogeneous structures based on the

normal distribution, just as it is needed for the asynchronous and nearest-neighbor structures

based on the uniform distribution.

4.3 Discussion of Results

In this section, we present simulation results for the heterogeneous asynchronous, syn-

chronous, and nearest-neighbor structures in which communication times are assumed to

be zero. Since the uniform distribution u(0; 1) has mean 1

2
and variance 1

12
, we examine the

normal distribution n(1
2
; 1

12
) so that comparisons can be made between the two distributions.

Using the scaling factor a, 0 < a < 1, the uniform u(0; 1) distribution will be paired with

the scaled u(0; a) distribution. Similarly, the normal n(1
2
; 1

12
) distribution will be paired with

the scaled n(a
2
; a

2

12
) distribution.7 Notice that u(0; a) and n(a

2
; a

2

12
) have the same mean but

di�erent variances, even though the same scaling constant a is used.

Table 1 provide simulation results8 for the heterogeneous asynchronous, synchronous,

and nearest-neighbor structures in which tasks are drawn from the uniform u(0; 1) and

u(0; a) distributions. Table 2 provides similar results for the normal n(1
2
; 1

12
) and n(a

2
; a

2

12
)

distributions. For comparison, simulation results for the relevant homogeneous structures

(where m = 0) are also included.

7If Y is n(�; �2) and X = kY , X is n(k�; k2�2).
8Results were taken to be the average of 10,000 simulated executions, where each processor executed 1000

tasks and all of the tasks on a particular processor came from one distribution.
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Table 1: Simulation Results for Expected Execution Times of Heterogeneous

Structures with Tasks from u(0; 1) and u(0; a) Distributions and Zero

Communication Times

Alg. (n;m)a

a
Struct. (3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0)

Asynch 508 508 510 510 511 511 513 513 516
1

2
Synch 750 753 800 801 833 834 889 890 941

NN 732 733 765 766 785 785 813 813 836

Asynch 508 508 510 510 511 511 513 513 516
2

3
Synch 750 760 800 804 833 838 889 891 941

NN 732 737 765 767 785 788 813 814 836

Asynch 508 508 510 510 511 511 513 513 516
4

5
Synch 750 770 800 811 833 848 889 896 941

NN 732 744 765 771 785 789 813 816 836

aThe notation (n;m) refers to a structure of width n in which n�m tasks are u(0; 1) and m tasks

are u(0; a), 0 < a < 1.

Table 2: Simulation Results for Expected Execution Times of Heterogeneous

Structures with Tasks from n(1
2
; 1

12
) and n(a

2
; a

2

12
) Distributions and

Zero Communication Times

Alg. (n;m)a

a
Struct. (3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0)

Asynch 508 508 510 510 511 511 514 514 517
1

2
Synch 744 747 797 798 836 837 911 912 1010

NN 727 728 762 762 783 784 817 818 848

Asynch 508 508 510 510 511 511 514 514 517
2

3
Synch 744 754 797 802 836 844 911 917 1010

NN 727 732 762 764 783 785 817 818 848

Asynch 508 508 510 510 511 511 514 514 517
4

5
Synch 745 766 797 811 836 860 911 937 1010

NN 727 739 762 768 783 789 817 820 848

aThe notation (n;m) refers to a structure of width n in which n�m tasks are n( 1
2
; 1

12
) and m

tasks are n(a
2
; a

2

12
), 0 < a < 1.
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For the asynchronous structure, the expected execution time for the heterogeneous (n;m)

structure is the same as that for the homogeneous (n�m; 0) structure. This is not surprising

since the structure's lack of synchronization allows some processors to race ahead of others.

Notice, however, that there is very little di�erence between the execution times for the (n;m)

and (n; 0) structures. Because the asynchronous structure is relatively insensitive to increases

in width (when the number of tasks per processor is constant), there is little to be gained by

moving some of the work from slower processors to faster processors as long as the amount

of work per processor is constant. Instead, performance gains may be made by allocating

more work to the faster processors and less work to the slower processors. For example, in

the case where a = 1

2
, each processor executing u(0; 1

2
) tasks can process on average twice as

many tasks as a processor executing u(0; 1) tasks.9

The simulation results for the synchronous structure agree with the analytical results

obtained from Equation 6 for the uniform distribution. When a is small or n is fairly large, the

expected execution time for the heterogeneous (n;m) structure is reasonably approximated

by the homogeneous (n�m; 0) structure. Notice that we predicted this behavior in Equation 7.

When a is large and n is small, the approximation is not very close, but the execution time

for (n;m) is still closer to the time for (n�m; 0) than it is to the time for (n; 0). Even

though the approximation was based on the uniform distribution, the results for the normal

distribution indicate that it still applies. Thus, the results indicate that the performance of

a homogeneous synchronous structure can be improved by using m faster processors to make

it heterogeneous.

Based on the results for the asynchronous and synchronous structures, we would expect

that the nearest-neighbor (n;m) structure can be approximated by the corresponding (n�
m; 0) structure. The results in Table 1 and Table 2 indicate that this is true when a is small

or n is large. Like the synchronous structure, the results for the (n;m) nearest-neighbor

structure are closer to those for the (n�m; 0) structure even when a is large and n is small.

Thus, the nearest-neighbor structure also has the property that performance gains can be

made by moving some of the tasks from slower processors to faster ones. Notice, however,

that the gains for the nearest-neighbor structure are not as great as those for the synchronous

structure.

5 Analysis of Synchronization and Communication

The previous section examined the cost of synchronization for the asynchronous, synchronous,

and nearest-neighbor structures. The cost of synchronization alone was determined by

assuming communication between tasks required zero units of time. This section will inves-

tigate the execution times of these structures and the asynchronous master-slave structure

when communication times are constant and non-zero.

9Because of di�erences in variances, a stream of 2n tasks from u(0; 1
2
) will not have the same distribution

as a stream of n tasks from u(0; 1). However, the two streams will have the same expected value if n is large

since the distribution of each stream can then be approximated by a normal distribution.
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5.1 Bounds on Execution Time

Asynchronous Structure

For the asynchronous structure in Figure 1a, communication occurs only between tasks on

the same processor. Since communication time between tasks on the same processor is zero

or minimal compared to communication between di�erent processors, it is reasonable to

assume that communication times for the purely asynchronous structure are zero. Thus, the

overall execution time for the asynchronous structure is not a�ected by communication.

Synchronous Structure

In the synchronous structure in Figure 1c, communication occurs between tasks on di�erent

processors and hence communication times are non-zero. Consider Figure 2, which shows a

Gantt chart for the execution of heterogeneous tasks in the synchronous structure on four

processors. In each iteration, communication is required to initiate execution of the tasks

and synchronize the tasks before proceeding to the next iteration. Notice that the tasks

have variable execution times. Assume that a processor may communicate with exactly

one processor at a time and a processor may communicate only when it is not busy with

computation.

= Communication= Computation

Figure 2: Gantt Chart for Synchronous Structure with Heterogeneous Tasks

Suppose that the shortest task in an iteration comes from the scaled u(0; a) distribution10

and the other tasks come from the u(0; 1) distribution. In the �rst iteration, the shortest task

is the �rst one to begin execution. Notice that the initial communication for the shortest

task a�ects the execution time for the iteration since the longer tasks must wait to begin

execution. In the second iteration, the same tasks are rearranged such that the shortest

task is the last one to begin execution. Notice that the shortest task's communication and

computation have no e�ect on the iteration's execution time. Speci�cally, the execution

time for the second iteration depends only on the time required for the three longest tasks.

Thus, the second iteration has an execution time that is shorter than the �rst iteration, even

though the same tasks are executed in both iterations.

Figure 2 demonstrates that the execution time for an iteration may be reduced by start-

ing the longest tasks before the shortest tasks. When task execution times come from known

10In the discussion that follows, it is assumed that 0 < a < 1.

10



distributions, the tasks with the largest means should be the �rst ones initiated in order to

increase the probability of minimizing the overall execution time. However, notice from the

third iteration that there is no guarantee that starting the longest tasks �rst will automati-

cally reduce the overall execution time. In this example (which does not use the same task

times as the �rst two iterations), the shortest task's �nal communication must be added to

the overall execution time for the other tasks. Starting the tasks that are likely to be the

longest at the beginning of the iteration merely presents the opportunity for reducing the

overall execution time. Results presented later in this paper will be based on the policy that

tasks from the distribution with the smaller mean (such as u(0; a)) will be initiated before

tasks from the distribution with the larger mean (such as u(0; 1)).

In [7, 8], we developed bounds on the expected execution time for the homogeneous

synchronous structure in which each iteration contains n tasks (executed on n identical

processors) and the structure contains p iterations. The expected time for the entire structure

E(X) follows the bounds

E(synch) + 2 pC � E(X) � E(synch) + (n + 1) pC; (10)

where E(synch) is the expected execution time without communication and C is the time

required for one communication.

While Equation 10 was developed for the homogeneous synchronous structure, it is also

applicable to the heterogeneous structure. In particular, the communication requirements

are the same for both structures, so the terms containing C do not change.11 The only

di�erence between the two structures is that the heterogeneous (n;m) structure requires less

execution time than the corresponding homogeneous (n; 0) structure. Thus, Equation 10

can be modi�ed slightly to obtain bounds for the heterogeneous synchronous structure.

E(synch
n;m

) + 2 pC � E(X) � E(synch
n;m

) + (n+ 1) pC; (11)

where E(synch
n;m

) represents the expected execution time for the heterogeneous structure

with communication that was determined in Section 4. In the next section, simulation results

will be used to examine the usefulness of these bounds.

Nearest-Neighbor Structure

Consider Figure 3, which shows a Gantt chart for the execution of tasks from the het-

erogeneous nearest-neighbor structure (Figure 1b). In this case, neighbor processors must

communicate with each other to assure that both have completed the current iteration before

proceeding to the next iteration. Notice that this communication could be synchronous, in

which both must be done with computation before any exchange can occur, or asynchronous,

in which the send and receive operations each take one communication unit of time. The

overall e�ect is that synchronization between neighbors requires two communication units.

Thus, a processor synchronizing with two other processors spends four communication units

before proceeding to the next iteration. It should be noted that it is assumed that commu-

nication between di�erent pairs of processors may occur simultaneously.

11Notice that we assume that communication times for the \faster" processors are the same as those for

the \slower" processors. Faster computation does not always result in proportionally-faster communication.

Similarly, di�erences in task times do not necessarily cause di�erences in communication times.

11



= Communication= Computation

Figure 3: Gantt Chart for Nearest-Neighbor Structure with Heterogeneous Tasks

For the homogeneous nearest-neighbor structure in which each processor has one or two

neighbors, the expected execution time E(X) was shown in [7] to be bounded by

E(nn) + 2 pC � E(X) � E(nn) + C(2n+ 6(p� 1)); (12)

where E(nn) is the expected execution time without communication that was determined by

simulation. For the heterogeneous structure, the communication requirements are the same

as those for the homogeneous structure. Thus, it is reasonable to assume that the bounds in

Equation 12 still hold when E(X) represents the heterogeneous execution time and E(nn) is

replaced by E(nnn;m). Simulated execution times will be compared to these bounds in the

next section.

Asynchronous Master-Slave Structure

It was fairly straightforward to determine bounds for the synchronous and nearest-neighbor

structures because each processor completed the same number of tasks. With the asyn-

chronous master-slave structure, processors can receive di�erent amounts of work, so the

analysis is more complicated.

Consider Figure 4, which shows a Gantt chart for the execution of slave tasks in the het-

erogeneous asynchronous master-slave structure on four processors.12 Like the synchronous

and nearest-neighbor structures, the initial tasks in the asynchronous master-slave structure

are staggered since communication from the master is required. Communication from the

slave to the master and from the master to the slave is required between each iteration.

Since the master can communicate with one slave at a time, there may be delays as slaves

wait to be serviced by the master object. Notice in Figure 4 that some processors complete

more tasks than other processors. Because there is no synchronization between slave tasks,

the master processor can \deal out" work to any processor that is idle.

In [7], we developed the following bounds for the expected execution time E(X) of the

homogeneous asynchronous master-slave structure:

E(asynch) + 2pC � E(X) � E(asynch0) + 2n0p0C; (13)

12Notice that Figure 4 shows only slave tasks and communication and does not indicate work by the master.

Although it is not realistic to ignore the e�ects of the master's work and communication on performance,

this approach can provide a lower bound on the structure's execution time.

12



= Communication= Computation

Figure 4: Gantt Chart for Asynchronous Master-Slave Structure with Heterogeneous Tasks

where E(asynch) is the expected execution time of the asynchronous structure (based on

synchronization alone) with n processors and p iterations and E(asynch0) is the corresponding

time with n0 = n� 1 processors and p0 =
l

np

n�1

m
iterations per processor.

Equation 13 was developed by considering the minimum and maximum execution times

of the slave processors and the master under the assumption that any task could be executed

on any processor. If the number of processors n or the communication unit C is large, the

execution time will be dominated by the master's communication with the slave processors.

In this case, the master may have little time for executing ordinary tasks since most of its

time will be spent servicing the slaves. At the other extreme, the master processor will spend

less time on communication and can process tasks along with the slave processors.

To determine bounds for the heterogeneous asynchronous master-slave structure, we need

to consider how the shorter task times will a�ect the overall execution time. In the worst case,

communication will dominate the execution time, and the shorter task execution times will

have little or no e�ect in reducing the overall time. Thus, the upper bound in Equation 13

for the homogeneous case will still serve as an upper bound for the heterogeneous structure.13

In the best case, computation will dominate the overall execution time, so the shorter task

times will have an e�ect on the lower bound.

To compute the lower bound for the heterogeneous case, we need to determine the optimal

distribution of work. Recall that the heterogeneous (n;m) structure will have task execution

times following one distribution (such as u(0; 1)) on n�m processors and a scaled distribution

(such as u(0; a)) on the other m processors. If the np tasks are \equally" distributed among

the processors according to processor speed,

(n�m)x+my = np; (14)

where x is the number of tasks assigned to each slower processor and y is the number of

tasks assigned to each faster processor.

Next, we must account for the minimal time spent on communication. Ideally, the

processors will all start and stop computation at the same time. Suppose that the structure

contains tasks from the u(0; 1) and u(0; a) distributions. Given that each task requires two

13The results from Section 4.3 indicate that there is little or no di�erence between E(asynch0) and

E(asynch0

n;m
). We will use E(asynch0) since it can be computed using the normal approximation [7].
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units of computation (one to receive the task and one to return the result), the execution

times for the processors will be identical if

x

�
1

2
+ 2C

�
= y

�
a

2
+ 2C

�
; (15)

where 1

2
and a

2
are the expected values for the u(0; 1) and u(0; a) distributions, respectively.

Observe that Equation 15 assumes that processors are never idle.

Equations 14 and 15 form a set of simultaneous equations that can be solved to �nd the

optimal values for x and y.

x =

�
np�my

n�m

�
y =

2
66666

�
np

n�m

��
1

2
+ 2C

�
�

m

n�m

��
1

2
+ 2C

�
+

�
a

2
+ 2C

�
3
77777

(16)

Notice that the ceiling function is used to obtain integer values for x and y. As a result,

Equation 15 may not be an exact equality, so the lower bound is given by

E(X) � max

�
x

�
1

2
+ 2C

�
; y

�
a

2
+ 2C

��
: (17)

5.2 Discussion of Results

To examine the behavior of (n;m) heterogeneous structures with non-zero communication

times, simulation was used to obtain expected execution times for the synchronous, nearest-

neighbor, and asynchronous master-slave structures. In particular, constant communication

times ranging from 0.025 to 0.25 were used with execution times distributed according to

the normal n(1
2
; 1

12
) and n(a

2
; a

2

12
) distributions.14 Each structure contained 1000n tasks,

and expected values were obtained by averaging the execution times of 10,000 simulated

executions.

Table 3 presents simulation results for the synchronous structure. As expected, the

execution times for the (n;m) structure fall between those for the (n�m; 0) and (n; 0)

structures. In particular, observe that there is a noticeable di�erence between the execution

times for (n;m) and (n; 0), even when the communication times are large. It is signi�cant that

the bene�t from reducing computation times onm processors is not completely outweighed by

the communication, even though the (n;m) structure requires just as much communication

as the (n; 0) structure.

Table 4 presents simulation results for the nearest-neighbor structure. When communi-

cation times are small or the number of processors is large, there is a noticeable di�erence

between the times for (n;m) and (n; 0). Thus, there is some bene�t in allocating work to

m faster processors. When communication times are large and the number of processors

is small, the bene�t disappears because the large amount of communication negates the

reduced computation times.

14In this section, only results for the normal distributions will be presented. Results for the uniform

distributions, which were similar to those of the normal distributions, are given in Appendix A.
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Table 3: Simulation Results for Expected Execution Times of Heterogeneous Syn-

chronous Structure with Tasks from n(1
2
; 1

12
) and n(a

2
; a

2

12
) Distributions and

Constant Communication Times

Comm. (n;m)a

a
Time C (3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0)

.025 837 864 916 936 977 1016 1106 1191 1343

.05 929 982 1036 1075 1119 1203 1310 1549 1726

.10 1118 1220 1277 1358 1408 1610 1741 2418 25671

2 .15 1311 1463 1521 1650 1705 2066 2199 3321 3449

.20 1508 1710 1769 1953 2009 2550 2671 4224 4344

.25 1709 1961 2020 2265 2316 3040 3147 5125 5242

.025 837 884 916 950 977 1047 1106 1244 1343

.05 929 1003 1036 1091 1119 1243 1310 1620 1726

.10 1118 1242 1277 1378 1408 1667 1741 2479 25674

5 .15 1311 1486 1521 1673 1705 2127 2199 3372 3449

.20 1508 1733 1769 1977 2009 2605 2671 4273 4344

.25 1709 1984 2020 2287 2316 3088 3147 5172 5242

aThe notation (n;m) refers to a structure of width n in which n�m tasks are n( 1
2
; 1

12
) and m

tasks are n(a
2
; a

2

12
), 0 < a < 1.

Table 4: Simulation Results for Expected Execution Times of Heterogeneous Nearest-

Neighbor Structure with Tasks from n(1
2
; 1

12
) and n(a

2
; a

2

12
) Distributions and

Constant Communication Times

Comm. (n;m)
a

Time C (3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0)

.025 781 795 816 824 836 841 865 868 890

.05 852 879 894 911 918 929 951 956 976

.10 1005 1063 1069 1100 1103 1122 1143 1150 11691

2 .15 1173 1258 1260 1302 1303 1330 1355 1364 1386

.20 1349 1456 1458 1509 1510 1543 1576 1587 1616

.25 1532 1657 1658 1716 1717 1754 1792 1805 1843

.025 781 800 816 826 836 844 865 869 890

.05 852 882 894 912 918 932 951 957 976

.10 1005 1063 1069 1100 1103 1125 1143 1151 11694

5 .15 1173 1256 1260 1302 1303 1337 1355 1367 1386

.20 1349 1455 1458 1509 1510 1553 1576 1591 1616

.25 1532 1656 1658 1716 1717 1765 1792 1811 1843

15



Table 5: Simulation Results for Expected Execution Times of Heterogeneous Asyn-

chronous Master-Slave Structure with Tasks from n(1
2
; 1

12
) and n(a

2
; a

2

12
) Dis-

tributions and Constant Communication Times

Comm. (n;m)
a

Time C (3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0)

.025 589 512 596 540 602 516 619 800 800

.05 686 640 707 687 728 803 834 1599 1600

.10 904 935 972 1052 1061 1600 1600 3199 31991

2 .15 1142 1264 1279 1503 1503 2399 2400 4798 4799

.20 1391 1620 1623 2000 2000 3199 3199 6396 6397

.25 1646 2002 2003 2499 2500 3999 3999 7997 7997

.025 589 571 596 584 602 585 619 800 800

.05 686 687 707 716 728 820 834 1599 1600

.10 905 965 977 1067 1070 1600 1600 3198 31994

5 .15 1142 1275 1279 1503 1503 2400 2400 4798 4799

.20 1391 1622 1623 2000 2000 3199 3199 6396 6397

.25 1646 2003 2003 2499 2500 3999 3999 7997 7997

Table 5 presents simulation results for the asynchronous master-slave structure. Notice

the bold-faced entries in Table 5, which identify (n;m) execution times that were less than the

times for the corresponding (n�m; 0) and (n; 0) structures. These entries indicate that the

heterogeneous asynchronous master-slave structure can signi�cantly improve performance

over both the (n�m; 0) and (n; 0) structures when communication times are very small. As

communication times get large, communication with the master dominates the execution

time and the (n;m) times quickly approach the (n; 0) times. Thus, the communication

outweighs any bene�t from faster computation.

Figures 5 through 10 demonstrate the bounds obtained in Section 5.1 by comparing them

with simulated execution times for the synchronous, nearest-neighbor, and asynchronous

master-slave structures. Figures 5 through 7 present results for the (8; 3) structure while

Figures 8 through 10 present similar results for the (16; 8) structure. Notice that the syn-

chronous and asynchronous master-slave structures closely follow the upper bound, while the

execution time for the nearest-neighbor structure falls right between the upper and lower

bounds. Results for other values of n and m followed the same patterns.
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Figure 5: Comparison of Simulated (8; 3) Synchronous Structure

with Upper and Lower Bounds
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Figure 6: Comparison of Simulated (8; 3) Nearest-Neighbor Structure

with Upper and Lower Bounds
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Figure 7: Comparison of Simulated (8; 3) Asynchronous Master-Slave

Structure with Upper and Lower Bounds
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Figure 8: Comparison of Simulated (16; 8) Synchronous Structure

with Upper and Lower Bounds
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Figure 9: Comparison of Simulated (16; 8) Nearest-Neighbor Structure

with Upper and Lower Bounds
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Figure 10: Comparison of Simulated (16; 8) Asynchronous Master-Slave

Structure with Upper and Lower Bounds
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6 Conclusions

� Heterogeneous algorithmic structures can be used to model problems containing tasks

with execution times from di�erent probability distributions.

� Ignoring communication times, the expected execution time for a heterogeneous (n;m)

structure is roughly the same as that for the corresponding homogeneous (n � m; 0)

structure.

� When non-zero communication times are considered, the heterogeneous (n;m) struc-

ture will require as much communication as the homogeneous (n; 0) structure.

� The heterogeneous (n;m) synchronous structure will generally be faster than the cor-

responding (n; 0) structure, even when communication times are large.

� When communication times are small, the heterogeneous nearest-neighbor structure is

slightly faster than the homogeneous structure. When communication times are large,

the execution times are the same, so there is no bene�t in using a mixture of slower

and faster processors.

� The (n;m) asynchronous master-slave structure can gain signi�cant performance over

the (n�m; 0) and (n; 0) structures when communication times are very small. The

bene�t of the (n;m) structure over the (n; 0) structure decreases as communication

times increase, until there is no bene�t at all.

� The theoretical bounds developed in Section 5.1 can be used to predict the expected

execution times for heterogeneous algorithmic structures with known task distributions.
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A Results for the Uniform Distribution

Tables 6 through 8 present results for the uniform distribution that are comparable to the

results for the normal distribution given in Tables 3 through 5. Notice that the results

for the two distributions are very similar. Correspondingly, the bounds for execution times

are practically identical for the two distributions, and the graphs in Figures 5 through 10

represent both the uniform and normal distributions.

Table 6: Simulation Results for Expected Execution Times of Heterogeneous Syn-

chronous Structure with Tasks from u(0; 1) and u(0; a) Distributions and

Constant Communication Times

Comm. (n;m)a

a
Time C (3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0)

.025 842 871 919 939 974 1014 1086 1178 1298

.05 935 988 1039 1078 1117 1202 1293 1546 1699

.10 1123 1226 1280 1361 1407 1608 1729 2422 25481

2 .15 1315 1468 1524 1651 1703 2066 2186 3319 3427

.20 1512 1714 1772 1953 2006 2551 2658 4219 4317

.25 1712 1965 2022 2266 2314 3042 3134 5118 5209

.025 842 889 919 950 1014 1034 1086 1208 1298

.05 935 1007 1039 1091 1117 1231 1293 1605 1699

.10 1123 1247 1280 1378 1407 1658 1729 2469 25484

5 .15 1315 1489 1524 1674 1703 2118 2186 3358 3427

.20 1512 1736 1772 1978 2006 2597 2658 4254 4317

.25 1712 1987 2022 2288 2314 3080 3134 5149 5209

aThe notation (n;m) refers to a structure of width n in which n�m tasks are u(0; 1) and m tasks

are u(0; a), 0 < a < 1.
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Table 7: Simulation Results for Expected Execution Times of Heterogeneous Nearest-

Neighbor Structure with Tasks from u(0; 1) and u(0; a) Distributions and

Constant Communication Times

Comm. (n;m)
a

Time C (3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0)

.025 786 800 820 828 839 844 865 868 886

.05 856 884 898 914 921 932 952 956 974

.10 1008 1067 1073 1103 1105 1124 1144 1151 11681

2 .15 1174 1262 1264 1306 1306 1332 1356 1365 1385

.20 1349 1461 1461 1513 1513 1546 1578 1588 1617

.25 1531 1662 1661 1721 1722 1758 1796 1808 1845

.025 786 805 820 830 839 846 865 868 886

.05 856 886 898 915 921 934 952 957 974

.10 1008 1066 1073 1102 1105 1127 1144 1151 11684

5 .15 1174 1260 1264 1304 1306 1338 1356 1367 1385

.20 1349 1459 1461 1512 1513 1556 1578 1593 1617

.25 1531 1660 1661 1721 1722 1770 1796 1813 1845

Table 8: Simulation Results for Expected Execution Times of Heterogeneous Asyn-

chronous Master-Slave Structure with Tasks from u(0; 1) and u(0; a) Distri-

butions and Constant Communication Times

Comm. (n;m)
a

Time C (3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0)

.025 589 513 596 540 602 519 622 800 803

.05 687 641 709 689 731 809 843 1599 1600

.10 905 938 977 1059 1070 1600 1600 3199 31991

2 .15 1144 1279 1288 1505 1505 2400 2400 4798 4798

.20 1396 1626 1629 2000 2000 3199 3199 6396 6397

.25 1658 2000 2000 2500 2500 3999 3999 7997 7997

.025 589 571 596 584 602 588 622 800 803

.05 687 689 709 719 731 828 843 1599 1600

.10 905 965 977 1067 1070 1600 1600 3198 31994

5 .15 1144 1283 1288 1505 1505 2400 2400 4798 4798

.20 1396 1628 1629 2000 2000 3199 3199 6396 6397

.25 1658 2000 2000 2499 2500 3999 3999 7997 7997

21


